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1. Introduction

In three dimensions, the Riemann and Ricci tensor both have the same number (six)

of independent components. Hence Einstein’s equation, with or without a cosmological

constant Λ, completely constrains the geometry and there are no local propagating degrees

of freedom. At first sight this makes the theory sound too trivial to be interesting. However

in the case of a negative cosmological constant, there are asymptotically AdS3 black hole

solutions [1] as well as massless gravitons which can be viewed as propagating on the

boundary. These black holes obey the laws of black hole thermodynamics and have an

entropy given by one-quarter the horizon area. This raises the interesting question: what

is the microscopic origin of the black hole entropy in these “trivial” theories?

In order to address this question one must quantize the theory. One proposal [2] is to

recast it as an SL(2,R)L × SL(2,R)R Chern-Simons gauge theory with kL = kR. Despite

some effort this approach has not given a clear accounting of the black hole entropy (see

however [3] for an interesting attempt). So the situation remains unsatisfactory.

More might be learned by deforming the theory with the addition of the gravitational

Chern-Simons term with coefficient 1
µ [4, 5]. The resulting theory is known as the topolog-

ically massive gravity (TMG) and contains a local, massive propagating degree of freedom,

as well as black holes and massless boundary gravitons. The addition of the Chern-Simons

term leads to more degrees of freedom because it contains three, rather than just two,
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derivatives of the metric. It is the purpose of this note to study this theory for negative

Λ = −1/ℓ2. We will argue that the theory is unstable/inconsistent for generic µ: either the

massive gravitons or BTZ black holes have negative energy. The exception occurs when

the parameters obey µℓ = 1, at which point several interesting phenomena simultaneously

arise:

(i) The central charges of the dual boundary CFT become cL = 0, cR = 3ℓ/G.

(ii) The conformal weights as well as the wave function of the massive graviton, gener-

ically 1
2 (3 + µℓ,−1 + µℓ), degenerate with those of the left-moving weight (2, 0) massless

boundary graviton. They are both pure gauge, but the gauge transformation parameter

does not vanish at infinity.

(iii) BTZ black holes and all gravitons have non-negative masses. Further the angular

momentum is fixed in terms of the mass to be J = Mℓ.

This suggests the possibility of a stable, consistent theory at µℓ = 1 which is dual to

a holomorphic boundary CFT (i.e. containing only right-moving degrees of freedom) with

cR = 3ℓ/G. The hope - which remains to be investigated - is that for a suitable choice

of boundary conditions the zero-energy left-moving excitations can be discarded as pure

gauge. We will refer to this theory as 3D chiral gravity. As we will review herein, if such

a dual CFT exists, and is unitary, an application of the Cardy formula gives a microscopic

derivation of the black hole entropy [6 – 8].

Related recent work [9]–[16] has considered an alternative deformation of pure 3D

gravity, locally described by the SL(2,R)L × SL(2,R)R Chern-Simons gauge theory with

kL 6= kR. This is a purely topological theory with no local degrees of freedom and is

not equivalent to TMG. It contains all the subset of solutions of TMG which are Einstien

metrics but not the massive gravitons. It is nevertheless possible that the arguments given

in [9] (adapted to the case kL = 0 as in [10]) which are quite general apply to the chiral

gravity discussed herein. Indeed discrepancies with the semiclassical analysis mentioned

in [9]–[16] disappear for the special case kL = 0.1 Moreover the main assumption of [9] —

holomorphic factorization of the partition function — is simply a consistency requirement

for chiral gravity because there are only right movers.

The paper is organized as follows. Section 2 gives a brief review of the cosmological

TMG and its AdS3 vacuum solution, and shows that the theory is purely chiral at the

special value of µ = 1/ℓ. Section 3 describes the linearized gravitational excitations around

AdS3. Section 4 shows how the positivity of energy imposes a stringent constraint on the

allowed value of µ. We end with a short summary and discussion of future directions.

2. Topologically massive gravity

2.1 Action

The action for TMG (topologically massive gravity) with a negative cosmological constant

1Although we do not study the Euclidean theory herein the relation Mℓ = J for Lorentzian BTZ black

holes in chiral gravity suggests that the saddle point action will be holomorphic.
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is [17]

I =
1

16πG

∫

d3x
√−g(R− 2Λ) +

1

16πGµ
ICS (2.1)

where Ics is the Chern-Simons term

Ics = −1

2

∫

d3x
√−gǫλµνΓρ

λσ

[

∂µΓσ
ρν +

2

3
Γσ

µτΓ
τ
νρ

]

(2.2)

and we take Λ negative. We have chosen the sign in front of the Einstein-Hilbert action

so that BTZ black holes have positive energy for large µ, while the massive gravitons will

turn out to have negative energy for this choice.2 The equation of motion is

Gµν +
1

µ
Cµν = 0 , (2.3)

where Gµν is the cosmological-constant-modified Einstein tensor:

Gµν ≡ Rµν − 1

2
gµνR+ Λgµν (2.4)

and Cµν is the Cotton tensor

Cµν ≡ ǫµ
αβ∇α

(

Rβν − 1

4
gβνR

)

. (2.5)

Einstein metrics with Gµν = 0 are a subset of the general solutions of (2.3).

2.2 AdS3 vacuum solution

TMG has an AdS3 solution:

ds2 = ḡµνdx
µdxν = ℓ2(− cosh2 ρdτ2 + sinh2 ρdφ2 + dρ2) (2.6)

where the radius is related to Λ by

ℓ−2 = −Λ (2.7)

The Riemann tensor, Ricci tensor and Ricci scalar of the AdS3 are:

R̄µανβ = Λ(ḡµν ḡαβ − ḡµβ ḡαν), R̄µν = 2Λḡµν , R̄ = 6Λ, (2.8)

The metric (2.6) has isometry group SL(2,R)L × SL(2,R)R. The SL(2,R)L generators are

L0 = i∂u , (2.9)

L−1 = ie−iu

[

cosh 2ρ

sinh 2ρ
∂u − 1

sinh 2ρ
∂v +

i

2
∂ρ

]

, (2.10)

L1 = ieiu
[

cosh 2ρ

sinh 2ρ
∂u − 1

sinh 2ρ
∂v −

i

2
∂ρ

]

(2.11)

where u ≡ τ + φ, v ≡ τ − φ. The SL(2,R)R generators {L̄0, L̄±1} are given by the above

expressions with u↔ v. The normalization of the SL(2,R) algebra is

[L0, L±1] = ∓L±1, [L1, L−1] = 2L0. (2.12)

The quadratic Casimir of SL(2,R)L is L2 = 1
2(L1L−1 + L−1L1) − L2

0. When acting on

scalars, L2 + L̄2 = − ℓ2

2 ∇̄2 [18].

2This contrasts with most of the literature which chooses the opposite sign in order that massive gravitons

have positive energy (for large µ).
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2.3 Chiral gravity

As shown by Brown and Henneaux [19], quantum gravity on asymptotically AdS3 space-

times with appropriate boundary conditions is described by a 2D CFT which lives on the

boundary. They computed the total central charge of the CFT and found cL + cR = 3ℓ/G.

Simplified calculations were given in [20 – 22]. The difference cL − cR corresponds to the

diffeomorphism anomaly. In reference [8, 23] it is shown that cL − cR = − 3
µG . In summary,

we have

cL =
3ℓ

2G

(

1 − 1

µℓ

)

cR =
3ℓ

2G

(

1 +
1

µℓ

)

(2.13)

In order that both central charges are non-negative, we must have, as was also noticed

in [24],

µℓ > 1 (2.14)

We note that had we chosen the opposite sign in front of the Einstein-Hilbert action the

central charge would be negative. An interesting special case is

µℓ = 1 (2.15)

which implies

cL = 0, cR =
3ℓ

G
. (2.16)

We will refer to this theory as chiral gravity. If the chiral gravity is unitary it can have

only right-moving excitations.

3. Gravitons in AdS3

In this section we describe the linearized excitations around background AdS3 metric ḡµν .

Expanding

gµν = ḡµν + hµν (3.1)

with hµν small, the linearized Ricci tensor and Ricci scalar are [25, 26],

R(1)
µν =

1

2
(−∇̄2hµν − ∇̄µ∇̄νh+ ∇̄σ∇̄νhσµ + ∇̄σ∇̄µhσν) (3.2)

R(1) ≡ (Rµνg
µν)(1) = −∇̄2h+ ∇̄µ∇̄νh

µν − 2Λh. (3.3)

The leading terms in G and C are

G(1)
µν = R(1)

µν − 1

2
ḡµνR

(1) − 2Λhµν , (3.4)

C(1)
µν = ǫ αβ

µ ∇̄α

(

R
(1)
βν − 1

4
ḡβνR

(1) − 2Λhβν

)

. (3.5)

We note TrC(1) = 0 and the Bianchi identity implies ∇̄µG(1)
µν = ∇̄µC

(1)
µν = 0 . The linearized

equations of motion are then

G(1)
µν +

1

µ
C(1)

µν = 0 (3.6)
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Tracing this equation yields TrG(1) = −1
2R

(1) = 0. So the equation of motion becomes

G(1)
µν +

1

µ
ǫµ

αβ∇̄αG(1)
βν = 0 (3.7)

where in terms of hµν

G(1)
µν =

1

2
(−∇̄2hµν − ∇̄µ∇̄νh+ ∇̄σ∇̄νhσµ + ∇̄σ∇̄µhσν) − 2Λhµν (3.8)

Now we fix the gauge. We define h̃µν ≡ hµν − ḡµνh, which gives h̃ = −2h. Plugging

hµν = h̃µν − 1
2 ḡµν h̃ into (3.3) and setting it to zero gives

∇̄µ∇̄ν h̃
µν = −Λh̃ (3.9)

Thus, the gauge

∇̄µh̃
µν = 0 (3.10)

together with the linearized equation of motion implies tracelessness of hµν : h̃ = −2h = 0.

This gauge is equivalent to the harmonic plus traceless gauge ∇̄µh
µν = h = 0. Noting that

[∇̄σ, ∇̄µ]hσ
ν = R̄σ

λσµh
λ
ν − R̄λ

νσµh
σ
λ = 3Λhµν − Λhgµν (3.11)

and imposing the gauge condition, (3.8) is just

G(1)
µν =

1

2
(−∇̄2hµν + 2Λhµν ) . (3.12)

The equation of motion (3.7) thus becomes
(

∇̄2 +
2

ℓ2

)(

hµν +
1

µ
ǫµ

αβ∇̄αhβν

)

= 0 (3.13)

Define three mutually commuting operators (DL,DR,DM ):

(DL/R)µ
β ≡ δµ

β ± ℓǫµ
αβ∇̄α, and (DM )µ

β ≡ δµ
β +

1

µ
ǫµ

αβ∇̄α (3.14)

where the meaning of superscripts will become clear presently. The equations of mo-

tion (3.7) can then be written as

(DLDRDMh)µν = 0 (3.15)

where we have used the linearized Bianchi identity. Since the three operators commute

equation (3.15) has three branches of solutions. First, the massive gravitons hM
µν given by

(DMhM )µν = hM
µν +

1

µ
ǫµ

αβ∇̄αh
M
βν = 0 (3.16)

are solutions special for TMG. The other two branches are massless gravitons which are

also solutions of Einstein gravity: G(1)
µν = 0. The left-mover hL

µν and right-mover hR
µν have

different first order equations of motion:

(DLhL)µν = hL
µν + ℓǫµ

αβ∇̄αh
L
βν = 0 (DRhR)µν = hR

µν − ℓǫµ
αβ∇̄αh

R
βν = 0 (3.17)
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Note that the components of (3.16) and (3.17) tangent to the AdS3 boundary relate those

components of hµν to their falloff at infinity. This could be used to directly infer their

conformal weights but we will instead just find the full solutions.

Next we solve for the three branches of solutions. Define linear operator (D̃M )µ
β ≡

δµ
β − 1

µǫµ
αβ∇̄α, which commutes with DM defined earlier. Applying D̃M on (3.7), we get

a second order equation,

(D̃MDMG(1))µν = (DM D̃MG(1))µν = − 1

µ2
[∇̄2 − (µ2 + 3Λ)]G(1)

µν = 0 (3.18)

where we have used the linearized Bianchi identity. Note that D̃MG = 0 is just the linearized

gravitational wave equation if we exchange µ for −µ. So solutions of TMG with both signs

of µ are solutions of (3.18). It can conversely be shown that all solutions of (3.18) are

solutions of TMG for one sign of µ or the other.

Rewrite the Laplacian acting on rank two tensors in terms of the sum of two SL(2,R)

Casimirs:

∇̄2hµν = −
[

2

ℓ2
(L2 + L̄2) +

6

ℓ2

]

hµν (3.19)

G(1)
µν can be written as

G(1)
µν =

[

1

ℓ2
(L2 + L̄2) +

2

ℓ2

]

hµν . (3.20)

Thus (3.18) becomes
[

− 2

ℓ2
(L2 + L̄2) − 3

ℓ2
− µ2

][

1

ℓ2
(L2 + L̄2) +

2

ℓ2

]

hµν = 0 . (3.21)

This allows us to use the SL(2,R)L × SL(2,R)R algebra to classify the solutions of (3.18).

Consider states with weight (h, h̄):

L0|ψµν〉 = h|ψµν〉, L̄0|ψµν〉 = h̄|ψµν〉. (3.22)

From the explicit form of the generators, we see

ψµν = e−ihu−ih̄vFµν(ρ) (3.23)

Now let’s specialize to primary states |ψµν〉 which obey L1|ψµν〉 = L̄1|ψµν〉 = 0. These

conditions plus the gauge conditions give h− h̄ = ±2 and

Fµν(ρ) = f(ρ)









1 h−h̄
2

i
sinh(ρ) cosh(ρ)

h−h̄
2 1 i(h−h̄)

2 sinh(ρ) cosh(ρ)
i

sinh(ρ) cosh(ρ)
i(h−h̄)

2 sinh(ρ) cosh(ρ) − 1
sinh2(ρ) cosh2(ρ)









(3.24)

where

∂ρf(ρ) +
(h+ h̄) sinh2 ρ− 2 cosh2 ρ

sinh ρ cosh ρ
f(ρ) = 0 (3.25)

for the primary states. The solution is

f(ρ) = (cosh ρ)−(h+h̄) sinh2 ρ (3.26)

– 6 –
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We see that
√−ḡψµν∗ψµν = 4 sinh ρ (cosh ρ)−3−2(h+h̄). Also using L2|ψµν〉 = −h(h−1)|ψµν〉

for primaries, the primary weights (h, h̄) obey:

[2h(h − 1) + 2h̄(h̄− 1) − 3 − µ2ℓ2][h(h − 1) + h̄(h̄− 1) − 2] = 0, h− h̄ = ±2 (3.27)

There are two branches of solutions. The first branch has h(h − 1) + h̄(h̄ − 1) − 2 = 0,

which gives:

h =
3 ± 1

2
, h̄ =

−1 ± 1

2
or h =

−1 ± 1

2
, h̄ =

3 ± 1

2
(3.28)

These are the solutions that already appear in Einstein gravity. The solutions with the

lower sign will blow up at the infinity, so we will only keep the upper ones corresponding to

weights (2, 0) and (0, 2). We will refer to these as left and right-moving massless gravitons.

The second branch has 2h(h − 1) + 2h̄(h̄− 1) − 3 − µ2ℓ2 = 0, which gives:

h =
3

2
± µℓ

2
h̄ = −1

2
± µℓ

2
(3.29)

or h = −1

2
± µℓ

2
h̄ =

3

2
± µℓ

2
(3.30)

where (3.29) are the solutions of (3.7), and (3.30) are the solutions of (3.7) with µ replaced

by −µ. In the case of interest µ ≥ 1/ℓ, only the solutions with the plus signs in (3.29)

will not blow up at the infinity. Hence the relevant solutions corresponding to massive

gravitons are

h =
3

2
+
µℓ

2
, h̄ = −1

2
+
µℓ

2
. (3.31)

Descendants are obtained by simply applying L−1 and L̄−1 on the primary |ψµν〉 .
Note that for chiral gravity at µℓ = 1, with cL = 0, cR = 3l

G , (3.31) becomes h = 2, h̄ =

0. Furthermore the wave function for the massive graviton becomes identical to that of the

left-moving massless graviton. In fact, we can eliminate the (2, 0) modes with the residual

gauge transformation

ǫt = e−2iu i sinh4(ρ)

6 cosh2(ρ)
, (3.32)

ǫφ = e−2iu−i sinh2(ρ)
(

2 + cosh2(ρ)
)

6 cosh2(ρ)
, (3.33)

ǫρ = e−2iu sinh(ρ)
(

1 + 2 cosh2(ρ)
)

6 cosh3(ρ)
, (3.34)

which satisfies

∇̄µǫν + ∇̄νǫµ + ψ(2,0)
µν = 0 . (3.35)

Note that this gauge transformation does not vanish at the boundary, so whether or not

the (2, 0) solution should be regarded as gauge equivalent to the vacuum depends on the

so-far-unspecified boundary conditions.
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4. Positivity of energy

4.1 BTZ black holes

The addition of the Chern-Simons term to the bulk action requires additional surface terms

which in turn modify the definition of energy [5]. These surface terms are non-vanishing in

general even for those solutions which satisfy the Einstein equation — namely BTZ black

holes and massless gravitons. For Einstein metrics, the mass M(µ) and angular momentum

J(µ) at general coupling µ are related to their values at µ = ∞ by [27, 8],

ℓM(µ) = ℓM(∞) +
J(∞)

µℓ
(4.1)

J(µ) = J(∞) +
M(∞)

µ
(4.2)

Note that our conventions differ from [27] in the orientation, and from [8] in the coefficient

before the Chern-Simons term, which is related by 1
µ = −32πβG3.

The bound ℓM(∞) ≥ |J(∞)| then implies positivity of energy for Einstein metrics

when µℓ > 1. When µℓ < 1, the energy of the black holes can be negative (There are some

discussion in this region in [29, 30], where other signs of instability also appear). Note that

for chiral gravity at µℓ = 1 we have

ℓM

(

1

ℓ

)

= J

(

1

ℓ

)

. (4.3)

This can be interpreted as the statement that all Einstein geometries are right-moving.

Now let’s compute the entropy of the black hole, assuming the existence of a unitary

dual CFT, following [7, 8]. The inner and outer horizons are at

r± =
√

2Gℓ(ℓM(∞) + J(∞)) ±
√

2Gℓ(ℓM(∞) − J(∞)) (4.4)

and do not depend on µ. In terms of these the macroscopic formula for the entropy,

including a contribution from the Chern-Simons term, is [24, 28, 29, 31].

SBH(µ) =
π

2G

(

r+ +
1

µℓ
r−

)

(4.5)

The left and right temperatures of the black hole are determined by periodicities and also

do not depend on µ. They are

TL =
r+ − r−

2πℓ2
, TR =

r+ + r−
2πℓ2

(4.6)

In terms of these quantities, the microscopic Cardy formula for the entropy is

SBH(µ) =
π2cL(µ)TLℓ

3
+
π2cR(µ)TRℓ

3
(4.7)

Using formula (2.13) for the central charges one readily finds that this agrees with the

macroscopic result (4.5).
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4.2 Gravitons

For µℓ > 1 the weights (h, h̄) of the massive gravitons are positive. The energy of the

massive gravitons is proportional to these weights but with a possible minus sign. In

particular if the overall sign of the action is changed, so is the energy, but the equations of

motion and hence the weights are unaffected. In [4, 5, 32], it was shown that with the sign

taken herein but no cosmological constant massive gravitons have negative energy. In this

section we redo this analysis for the case of negative cosmological constant, by constructing

the Hamiltonian [33].

The fluctuation hµν can be decomposed as

hµν = hM
µν + hL

µν + hR
µν (4.8)

where we use the subscriptM to represent the (3+µℓ
2 , −1+µℓ

2 ) primary and their descendants,

L to represent the (2, 0) primary and their descendants, and R to represent the (0, 2)

primary and their descendants. We will call them massive modes, left-moving modes and

right-moving modes hereafter.

Up to total derivatives, the quadratic action of hµν is

S2 = − 1

32πG

∫

d3x
√−ghµν

(

G(1)
µν +

1

µ
C(1)

µν

)

(4.9)

=
1

64πG

∫

d3x
√−g

{

− ∇̄λhµν∇̄λhµν +
2

ℓ2
hµνhµν − 1

µ
∇̄αh

µνǫµ
αβ

(

∇̄2 +
2

ℓ2

)

hβν

}

The momentum conjugate to hµν is

Π(1)µν = −
√−g
64πG

(

∇̄0

(

2hµν +
1

µ
ǫµα

β∇̄αh
βν

)

− 1

µ
ǫβ

0µ

(

∇̄2 +
2

ℓ2

)

hβν

)

(4.10)

Using the equations of motion we find,

Π
(1)µν
M =

√−g
64πG

(

− ∇̄0hµν +
1

µ

(

µ2 − 1

ℓ2

)

ǫβ
0µhβν

M

)

(4.11)

Π
(1)µν
L = −

√−g
64πG

(

2 − 1

µℓ

)

∇̄0hµν
L (4.12)

Π
(1)µν
R = −

√−g
64πG

(

2 +
1

µℓ

)

∇̄0hµν
R (4.13)

Because we have up to three time derivatives in the Lagrangian, using the Ostrogradsky

method we should also introduce Kµν ≡ ∇̄0hµν as a canonical variable, whose conjugate

momentum is

Π(2)µν =
−√−gg00

64πGµ
ǫβ

λµ∇̄λh
βν (4.14)

again using equations of motion we have

Π
(2)µν
M =

−√−gg00

64πG
hµν

M (4.15)

Π
(2)µν
R =

−√−gg00

64πGµℓ
hµν

L (4.16)

Π
(2)µν
L =

√−gg00

64πGµℓ
hµν

R (4.17)

– 9 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
2

The Hamiltonian is then

H =

∫

d3x
(

ḣµνΠ(1)µν + K̇iµΠ(2)iµ − S
)

(4.18)

Specializing to linearized gravitons, and using their equations of motion, we then have the

energies

EM =
1

µ
(µ2 − 1

ℓ2
)

∫

d3x

√−g
64πG

ǫβ
0µhβν

M ḣMµν (4.19)

EL =

(

− 1 +
1

µℓ

)∫

d3x

√−g
32πG

∇̄0hµν
L ḣLµν (4.20)

ER =

(

− 1 − 1

µℓ

)
∫

d3x

√−g
32πG

∇̄0hµν
R ḣRµν (4.21)

All the integrals above are negative, as can be shown by plugging in the solu-

tions (3.23), (3.24) and (3.26) for primaries and by using the SL(2,R) algebra for descen-

dants. For the massive mode, the energy is negative when µℓ > 1 (it becomes infinitely

negative at µ = ∞) and positive when µℓ < 1. The energy of left-moving modes is positive

when µℓ > 1, and negative when µℓ < 1. The energy of right-moving modes is always

positive. µℓ = 1 is a critical point, where the energy of both massive modes and the

left-moving modes becomes zero. Note EL and ER are consistent with (4.1).

Recall that positivity of central charges requires that µℓ ≥ 1, so the only possibility for

avoiding negative energy is to take the chiral gravity theory with µℓ = 1. In that case, we

see that massive and left-moving gravitons carry no energy, and might perhaps be regarded

as pure gauge.

5. Conclusion and discussion

In this note, we investigated the cosmological TMG, and found that the theory can be at

most sensible at µℓ = 1. At this special point, the theory is completely chiral. In order to

show that the chiral theory is classically sensible asymptotic boundary conditions which

consistently eliminate the infinite degeneracy of zero-energy excitations must be specified.

One must also prove a non-linear positive energy theorem. Renormalizability must be

addressed to define the quantum theory.

At the classical level the chiral structure might enable an exact solution of the theory.

Some exact non-Einstein solutions of TMG with arbitrary µ have been found in [34]–[40].

Should there turn out to also be a consistent quantum theory it would be interesting to

find the chiral CFT dual. Towards this end the approach of [9] may prove useful.
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A. Energy-momentum pseudotensor

In this appendix we show that the energy defined from the energy momentum pseudotensor

for massive gravitons can be negative. For simplicity we specialize to Λ = 0: for µℓ≫ 1 the

Compton wavelength of the gravitons is much shorter than the AdS3 radius so the latter

can be locally ignored.

Let us first review how the energy-momentum pseudo tensor at quadratic order is

defined without the Chern-Simons term or cosmological constant term. The full Einstein

equation in the presence of matter is

Gµν = 16πGTM
µν (A.1)

Expanding the metric gµν = ηµν + hµν , we have through quadratic order

G(1)
µν = −G(2)

µν + 16πGTM
µν (A.2)

where G
(1)
µν and G

(2)
µν are terms linear and quadratic in hµν . The energy momentum pseudo

tensor defined as

tµν = − 1

16πG
G(2)

µν , with ∂µtµν = 0, (A.3)

sources the Newtonian part of the gravitational potential in the same way that the matter

stress tensor does. When adding the Chern-Simons term, the energy momentum pseudo

tensor is similarly defined as

tµν = − 1

16πG

(

G(2)
µν +

1

µ
C(2)

µν

)

. (A.4)

In flat background, the linearized equation of motion (3.7) becomes

∂2hµν +
1

µ
ǫµ

αβ∂α∂
2hβν = 0 (A.5)

under the harmonic plus traceless gauge. For a plane wave solution in the form of hµν(k) =
1√
2k0

e−ik·xeµν(k), the gauge conditions and the equations of motion are

kµeµν(k) = 0, eµ µ(k) = 0 (A.6)

k2

[

eµν(k) − ikα

µ
ǫµ

αβeβν(k)

]

= 0. (A.7)

The k2 = 0 solution is pure gauge. So eµν(k) − ikα

µ ǫµ
αβeβν(k) = 0, which implies (k2 +

µ2)eµν(k) = 0. When kµ = (µ, 0, 0), the positive energy solution is

hµν =
e−iµτ

√
2µ







0 0 0

0 1 i

0 i −1






(A.8)

It is convenient to define eµ(~0) = (0, 1, i), such that

eµν(~0) = eµ(~0)eν(~0), (A.9)

and eµν(~k) = eµ(~k)eν(~k), (A.10)
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where eµ(~k) is obtained from eµ(~0) by a boost. The metric fluctuation can be expanded in

Fourier modes,

hµν =

∫

d~k2 1√
2k0

{α(~k)eµν(~k)e−ik·x + α†(~k)e∗µν(~k)eik·x} (A.11)

To calculate the energy momentum pseudo tensor, we will need the following,

tµν = − 1

16πG

(

G(2)
µν +

1

µ
C(2)

µν

)

(A.12)

G(2)
µν = R(2)

µν − 1

2
ηµνR

(2) (A.13)

R(2)
µν =

1

2
hρσ∂µ∂νhρσ − hρσ∂ρ∂(µhν)σ +

1

4
(∂µhρσ)∂νh

ρσ (A.14)

+(∂σhρ
ν)∂[σhρ]µ +

1

2
∂σ(hρσ∂ρhµν) (A.15)

C(2)
µν = ǫµ

αβ∂α

(

R
(2)
βν − 1

4
ηβνR

(2)

)

+ hµλǫ
λαβ∂αR

(1)
βν − ǫµ

αβΓλ(1)
αν R

(1)
βλ (A.16)

Γλ(1)
να =

1

2
ηλρ(∂αhρν + ∂νhρα − ∂ρhαν) (A.17)

R(1)
µν = −1

2
∂2hµν (A.18)

Using the equation of motion (3.16), it simplifies to

G(2)
µν = −1

4
(∂µhρσ)∂νh

ρσ − µ2

2
hρ

µhρν − µ2

8
ηµνh

ρσhρσ , (A.19)

C(2)
µν =

µ2

4
(3µhρµh

ρ
ν + ǫµ

αβhλ
α,νhβλ) (A.20)

up to total derivatives. So the energy is

E =

∫

d2~x t00 (A.21)

=

∫

d2~k
n(k)

16πGk0

{(

k2
0 −

µ2

2
− k0µ

)

− 1

2
µ2e0(~k)

∗e0(~k)

}

. (A.22)

For vanishing spatial momentum n(~k) ∝ δ2(~k), the energy is just −µ times a positive

normalization factor.
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